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Abstract

Ceramics fail in most cases by unstable extension of
natural defects. Whilst strength measurements are
mostly available for simple test specimens, it is of
practical interest to develop procedures which allow
to predict the strengths of more complicated compo-
nents. Several possibilities are considered which are
based on a principal stress criterion, a fracture
mechanics procedure using single cracks (including
stress gradients and R-curve behaviour), and on a
procedure which applies multiaxial Weibull statistics
to the surface and volume defect population. # 1998
Published by Elsevier Science Limited.

1 Introduction

Failure of ceramic components is caused by
unstable extension of natural crack-like defects,
which are always present due to manufacturing
and surface treatment. Whilst the failure behaviour
has been studied in the literature mostly for simple
components (e.g. rectangular bending bars), com-
bined with uniaxial stress states, real components
are of a more complex structure and in a multiaxial
stress state. As an example of such a component
the notched bending bar will be considered in this
investigation.
In the most general case of multiaxial stress state

failure can be assessed using the multiaxial Weibull
theory. Therefore, it is assumed that the compo-
nent contains ¯aws of random size, of random
location and of random orientation with respect to
the principal stress axes. Theoretical considerations
for notched components were made by BruÈ ckner-
Foit et al.1 Experimental results can hardly be
found in the open literature. Strength results with-
out theoretical analysis were given by Wang et al. 2

The aim of this paper is to predict the strength of
notched bars with di�erent notch root radii from
the strength of ¯at unnotched bars and to compare
these predictions with strength measurements.

2 Failure of Notched Bars

2.1 Failure probability under multiaxial stresses
The fracture by unstable propagation of natural
¯aws leads to a scatter behaviour of strength data
which re¯ects the scatter in ¯aw sizes and loca-
tions. The basis for the computation of the failure
probability of a ceramic component is the multi-
axial Weibull theory.3±6 In the statistical treatment
it is assumed that the ¯aws can be described by
cracks which are randomly distributed with respect
to their location and orientation. The most severest
crack, given by the most serious combination of
size, location and orientation, is responsible for
fracture.
Following the analysis made by BruÈ ckner-Foit et

al.1 the failure probability Pf is given as:3,5,6

Pf � 1ÿ exp ÿ 1
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where �0 and m are the Weibull parameters, 
 is
the surface of a unit sphere, and V0 is a reference
or unit volume. The equivalent stress �eq is a func-
tion of the principal stresses �1, �2 and �3 and the
polar angles (�; �), which determine the crack
plane relative to the principal axes. To calculate �eq
we need the stress �n normal to the crack plane

�n � �1 cos2 �� �2 sin2 �
ÿ �

sin2 �� �3 cos2 � �2�

and the shear stress in the crack plane
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and

�r� � �1 cos2 �� �2 sin2 �ÿ �3
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Di�erent multiaxiality criteria are known in the liter-
ature (see e.g. Ref. 7). An often used criterion, based
on the energy release rate in the crack plane is 8
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The failure probability may be expressed as a
Weibull distribution with the parameters m and b

Pf � 1ÿ exp ÿ ��
b

� �mh i
�7�

where �� is a reference stress, e.g. the maximum
principal stress. The parameters b and H are
de®ned by

b � �0Hÿ1 �8�

and

H � Veff
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where Ve� is the e�ective volume. In the preceding
considerations only volume defects were taken into
account. If surface cracks are responsible for fail-
ure, one obtains similar to eqn (1):

Pf;A � 1ÿexp ÿ 1
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where A0 is the unit surface. An H-value, given in
eqn (9) for the volume, can also be de®ned for the
e�ective surface.

2.1.1. Prediction of the component strength
The normalised e�ective volume H [eqn (9)] is
independent of the height of the load ��. There-
fore, it is an appropriate tool to estimate the in¯u-

ence of a stress distribution on the failure
probability. In this investigation the quantity is
used to predict from a known geometry the failure
probability for another geometry. The basis of the
prediction is eqn (8). The quotient of the two Wei-
bull parameters b(1) and b(2) for two geometries
results as

b�1�

b�2�
� H�2�

H�1�
�11�

The ratio of the allowed stresses is then

��1��

��2��
� H�2�

H�1�
�12�

where ��1�� and ��2�� are the maximum admissible
reference stresses for a certain failure probability
Pf. The numerical value of H depends on the de®-
nition of the reference stress [see eqn (9)]. The
strength predictions performed with eqn (12) are
related to the reference stress de®ned by eqn (9). In
case of a notched bar this stress may be the nom-
inal (net section) stress �nom or the stress at the
notch root �k, de®ned by

�k � Kt�nom �13�

where Kt is the stress concentration factor. From
eqn (8) the dependency between the Weibull para-
meters and the H-values results

�0 � bnomHnom � bkHk � KtbnomHk �14�

The H-values, consequently, di�er by the factor Kt:

Hnom � KtHk �15�

and for the strength predictions it holds
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3 Numerical Computations

3.1 Stress concentration factors and stress intensity
factors
For computation of failure stresses at the notch
root from the experimentally determined bending
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moment we computed the stress concentration
factors of the notch geometries using the Finite-
Element Method (FEM) and the Boundary Ele-
ment Method (BEM). The geometric data of the
specimens with notches are illustrated in Fig. 1.
The FE-calculations were performed with ABA-

QUS,9 and in case of the BEM analysis the
BEASY 5.0 program system10 was used. Plane
stress conditions were assumed. The stress concen-
tration factor is de®ned in eqn (13) with the notch
root stress �k known from the numerical stress
analysis. Table 1 shows the geometries used and
the concentration factors obtained together with
two results from the literature.11 The results of the
FEM-analysis and the BEM computation showed
maximum di�erences less than 1%.
Stress intensity factors for cracks emanating at

the notch root were computed with the BEM pro-
gram package (BEASY Crack Growth)12 using the
J-integral method. The cracks were assumed as
through-the-thickness cracks with the crack plane
normal to the specimen length axis. The stress
intensity factors were expressed by the geometric
functions Y according to

K1 � �
����������
a� l
p

Y �17�

where � is the outer ®bre bending stress, l is the
notch length and a is the crack size (see Fig. 2).
The stress intensity factorsÐexpressed by the

geometric functionÐare shown in Fig. 3 (upper
part) for the narrow notch and in the lower part
for the wide notch. The crack length normalised to

the notch root radius r is given by the upper scale.
The ®gures additionally show the two well-known
limit cases, namely the short-crack solution
expressed by

Kl;s � 1�12�k

������
�a
p �18�

and the long-crack limit in which it is assumed that
the crack-notch con®guration acts as an edge-crack
of total length l+a, with the geometric function
taken from Ref. 13 In accordance with Ref. 14
slight overshooting is visible.

3.2 Determination of the e�ective volumes
Strength predictions were performed using the
software package STAU.15 In this procedure ®rst
the stress distribution in the whole component is
determined by FEM. The statistical data as the
Weibull parameters are introduced and the failure
criterion and the H-values are evaluated by
numerical integration. For the computation of the
H-values the specimen length 45mm and the nor-
mal 4-point-bending test arrangement (outer roller
span 40mm, inner roller span 20mm) were used.
The maximum principal stress in the component
was used as the reference stress. In case of the
notched bars the maximum stress at the notch root
was applied and for the unnotched specimens the
maximum outer ®bre stress was used. We used
the normal stress criterion as the failure criter-
ion.1,7

The results are plotted in Fig. 4 for surface
cracks (upper diagram) and for volume cracks
(lower diagram) as a function of the Weibull
exponent m. The H-values for the three geometries
approach the same asymptotic limit for large Wei-
bull exponents

lim
m!1H�m� � H<0�05> � H<0�08> � H<1> �19�

Fig. 1. Notch geometry (schematical).

Table 1. Comparison of the stress concentration factors

Specimen geometry Stress concentration factor

Notch radius
(mm)

Cross-section
B�W (mm)

FEM BEM Peterson
(Ref. 11)

0.05 3.0�4.0 5.88 5.88 Ð
0.8 3.0�4.0 1.78 1.78 1.75
0.05 3.5�4.5 6.26 6.26 Ð
0.8 3.5�4.5 1.89 1.89 1.82

Fig. 2. Crack ahead of a circular notch.

Strength predictions for notched alumina specimens 331



where the superscripts symbolise the notch radius
and <1> stands for the plane bar. The strength
predictions then read according to eqn (12)

lim
m!1�� � ��<0�05>K � ��<0�8>K � � �<1>K �20�

This result means that in case of negligible scatter
behaviour the strength of the component is deter-
mined only by the maximum stress occurring and
the value of the e�ective volumes will not be
important. With increasing scatter (decreasing m)
the H-values di�er more and more from each other
and the failure stress at the notch root di�ers sig-
ni®cantly.

4 Experimental Results

4.1 Bending strength
Two di�erent aluminas were tested, a ®ne-grained
99.7% Al2O3 (Rk87, Cerasiv, Plochingen) with a

mean grain size 2.5±3�m, and a 99.6% Al2O3

(Al23, Friatec, Mannheim) with a mean grain size
of 20�m. The surfaces of the straight bars and the
notches were ®nished with a diamond wheel D46
operating perpendicular to the specimen length
axis. The strength measurements are shown in
Fig. 5 for the ®ne-grained material (upper diagram)
and for the coarse-grained alumina (lower dia-
gram). While for the unnotched specimens the
outer ®bre bending stress is de®ned as the strength,
we used in case of the notched bars the stress at the
notch root as the strength values. In Table 2 the
Weibull parameters obtained with the maximum
likelihood procedure are entered together with the
90% con®dence intervals (data in parentheses).
The comparison of the strength data shows that

the narrow notches tolerate higher notch stresses
than the wider ones. The lowest strength is found
for the plane specimen with in®nite notch root
radius. For the Weibull exponents no signi®cant
di�erences are obvious for the ®ne-grained Rk87,
but in case of the coarse-grained Al23 the m-values

Fig. 3. Geometric function for a crack ahead of a notch (upper diagram: r=0.05mm, lower diagram r=0.8mm).
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for notches (identical for the two radii) are signi®-
cantly higher than for the unnotched bars.

4.2 Fracture toughness and R-curve
Fracture resistance measurements were carried out
with SENB specimens in bending with an initial
saw-cut of relative depth a0/W� 0.5 and a width of
50�m. The R-curve was determined in a controlled
fracture test using an extremely rigid 3-point-
bending test device. The R-curves determined with
the compliance method are shown in Fig. 6 for
Rk87 and for Al23. The initial toughness values
were determined in a series of tests as (mean value
and standard deviation) to be

�KI0 � 3�0� 0�29 MPa
����
m
p

for (®ne-grained) Rk87, and

�KI0 � 2�4� 0�43 MPa
����
m
p

for (coarse-grained) Al23.

5 Strength Predictions

5.1 Types of predictions
The strength can be predicted for di�erent failure
conditions. Five possibilities, abbreviated as meth-
ods (I) to (V), are outlined below, and three di�er-
ent predictions will be made, denoted, predictions
A, B and C. Prediction A is a prediction from the
plane bar to the narrow notch, prediction B is also
based on the plane bar data and predicts the
strength of the wide notch, and, ®nally, prediction
C predicts the narrow notch strength from data of
the wide notch. In principle, only two of these
three possibilities are independent.

5.1.1. Maximum stress (I)
The simplest method of predicting strength is
based on the criterion

�max � �c �21�

Failure occurs when the maximum principal stress
in the component reaches a critical value. The

Fig. 4. H-values for notched and unnotched specimens; notch root radii r: 0.05mm, 0.8mm, and 1. Specimen size B�W:
3.0� 4.0mm2.
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maximum principal stresses occur for the notched
bars at the notch root and in case of the unnotched
specimens at the outer ®bre of the tensile region. If
these reference stresses are used, one has to expect
identical strength data for all geometries. In Fig. 7
the strength data predicted for the three possible
directions of prediction are entered as vertical bars
(I) for the Rk87 alumina and for the Al23 material.
The deviations between prediction and experiment
(represented by the horizontal scatter bands) are
signi®cant for both materials in case of predictions
A and C.

5.1.2. Critical crack size without R-curve (II)
This method is based on the assumption that in
case of all geometries comparable cracks are

Fig. 5. Inert strength for notched and unnotched specimens. Upper diagram: ®ne-grained alumina. Lower diagram: coarse-grained
alumina.

Table 2. Weibull-parameters of strength with 90%-con®dence intervals (columns 2 and 3 Rk87, columns 4 and 5 Al23)

Notch radius Weibull-parameter b(MPa) Weibull-exponent m Weibull-parameter b(MPa) Weibull-exponent m

0.05mm 869.4 [854; 885] 18.6 [14.5; 24.0] 696.6 [679; 715] 15.1 [11.2; 20.5]
0.8mm 590.9 [572; 611] 13.3 [9.5; 18.8] 416.5 [406; 428] 15.2 [11.2; 20.6]
1 513.5 [498; 529] 13.4 [9.9; 18.2] 309.3 [294; 326] 6.3 [5.0; 8.1]

Fig. 6. R-curve for ®ne-grained Al2O3 (Rk87) and coarse-
grained Al2O3 (Al23).
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responsible for failure, i.e. it is assumed that
machining a notch causes the same ¯aw population
as machining the plane surfaces. In this approxi-
mation the increase in the crack resistance curve is
ignored and failure is described by the condition
K=K10. The size of such a crack (described by a
through-the-thickness crack) is derived from the
strength of the geometry `1', the strength of the
unnotched bar

ac � K10

�
�1�
c Y�1�

 !2

; ��2�c �
K10�����
ac
p

Y�2�
� ��1�c

Y�1�

Y�2�
�22�

and the strength for geometry `2' is given by �(2)c,
with the geometric functions known from the
numerical analysis. In contrast to method (I), this
procedure takes into account the decreasing stress
with increasing distance from the notch root.
Table 3 illustrates the prediction procedure in

case of the ®ne-grained material. The predictions
were made for �c � b, i.e. for a failure probability
F=0.632. Starting with the strength of the unnot-
ched specimens, the fracture toughness and the
geometric function for edge cracks, the critical
crack length for the unnotched specimens ac

1

is computed with eqn (22). Assuming that this
crack size is also typical of the notched specimens,
i.e.

a<r�0�05>c � a<r�0�8>c � a<1>c

the prediction according to eqn (22) using the geo-
metric functions for cracks at notch roots provides
the strength data entered in the last column of
Table 3.
In Fig. 7 the predictions (marked II) are com-

pared with the experimental data. This type of pre-
diction gives strengths which are by about 20%
below the experimental results for predictions A
and C, but are in good agreement with the experi-
mental ®ndings in case of prediction B. Figure 7
shows the same type of prediction also for the
coarse-grained material Al23.

5.1.3. Critical crack length with R-curve e�ect (III)
This procedure is similar to method (II). But in this
case the e�ect of the R-curve is taken into consid-
eration. The failure stress results from the tangent
condition between the applied stress intensity fac-
tor as the loading quantity, the KI,appl-a-curve, and
the crack resistance curve KIR

KI;appl � KIR �23�

@Kl;appl

@a

� �
��const��c

� dKIR

da

� �
�24�

In case of the less pronounced R-curve behaviour
of Rk87, the condition of instability is ful®lled only
by eqn (23), and a tangent condition according to
eqn (24) does not exist. Consequently, failure
occurs at a=ai and the initial value of the KI -a-
curve, i.e. KI0, has to be used. The principal treat-
ment is identical with method (II) and, conse-
quently, the same predictions result for methods
(II) and (III). In case of the coarse-grained Al23
with its strongly increasing R-curve methods (II)

Fig. 7. Comparison of strengths with predictions for Rk87
and Al23. Predictions for 90% con®dence. (I) Maximum
stress; (II) critical crack length; (III) similar to (II), but with R-
curve behaviour considered; (IV) Weibull statistic (black:
volume cracks, grey: surface cracks); (V) critical crack length
combined with reduced e�ective surface. Horizontal bars:
scatter band of easured bending strength. `Bending strength'
de®ned as the maximum principal stress at the notch root.

Table 3. Strength prediction for ®ne-grained alumina (RK87)
using method (II)

Notch
geometry

Experiment b
(MPa)

ac
(mm)

Y Prediction �k,pred
(MPa)

r=1 513.5 8.67 1.984 Ð
r=0.8mm Ð 8.67 1.956 520.3 B
r=0.05mm Ð 8.67 1.532 664.3 A
r=0.8mm 590.9 6.64 1.970 Ð
r=0.05mm Ð 6.64 1.624 716.9 C
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and (III) give di�erent results. The predictions are
entered in Fig. 7 as result (III).

5.1.4. Prediction using e�ective volumes or e�ective
surface (IV)
This method is based on the statistical assessment
of failure probabilities. For the strength prediction
from one geometry (1) to the other (2) it results from
eqn (12):

��2�� � ��1��H
�1�

H�2�
� ��1�� b

�2�

b�1�
�25�

where �(1)* and �(2)* are the maximum allowable
reference stresses for the component geometries
and H (1) and H (2) are the normalised e�ective
volumes or surfaces. The H-values for the consid-
ered specimens are known from the numerical
computations, presented in Section 3. Figure 8
shows the H-ratios for the combinations A, B and
C as a function of the Weibull exponent m for the
assumptions of volume or surface defects. If the
type of defect population is known (volume or
surface cracks), the ratio of the predicted strengths
results as the reciprocal of the H-value ratioÐsee
eqn (25). If prediction and experiment agree, the
ratio of the H-values must correspond to the reci-
procal ratio of the experimentally determined Wei-
bull parameters b. In order to check this, the ratio
of b-values is additionally plotted versus the
experimental Weibull exponents m (90% con®-
dence intervals used) which results in the horizon-
tal bars. The related geometries (1) and (2) are
illustrated by the inserts in Fig. 8.
A statistical compatibility of prediction and

experiment can be stated if the curves for the
H-ratios intersect the horizontal bars. Since the
type of failure relevant defects could not be identi-
®ed de®nitely by fractography, the compatibility
has to be discussed separately for volume cracks as
well as for surface cracks. The procedure is very
simple in cases where the Weibull exponents in the
notched and unnotched specimens are identical. A
complication occurs if the m-values are di�erent
from each other. Therefore, two di�erent horizon-
tal bars have to be considered. The solid one
results, if b-ratio is plotted versus the con®dence
interval of Weibull parameter m(1) of geometry (1)
and the dashed one if b-ratio is plotted versus the
m-con®dence interval of geometry (2). In order to
improve the recognition, the two bars are plotted
at slightly di�erent b-ratios.
For Rk87 all Weibull exponents are nearly iden-

tical. In case of specimen combination A the m
con®dence interval for the notched bars is slightly
shifted to higher values compared with the unnot-

ched bars. The degree of compatibility depends on
the chosen con®dence interval. If we choose the
interval corresponding to the unnotched speci-
mens, an agreement can be stated for surface
cracks only. In case of the notched specimens a
better agreement is obtained for the volume
defects. Specimen combination B shows complete
overlapping of the con®dence intervals. But in this
case no agreement between prediction and mea-
surement can be seen. The prediction C shows an
agreement for volume cracks. From the results of
Fig. 8 we can summarise that no clear statement
can be made about the failure- relevant defect
population. Finally, it should be mentioned that
the inverse predictions from (2) to (1) results in the
same diagram since only the ratios of H-values
enter Fig. 8.

Fig. 8. Comparison of the H-values with the Weibull para-
meters of the bending strength (Rk87). Symbols: H-ratios.
Horizontal bars: b-ratios, plotted versus the 90%-con®dence
intervals of Weibull parameter m. Solid bar: based on Weibull
parameter for geometry (1); dashed bar: based on Weibull

parameter for geometry (2).
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5.1.5. Combination of e�ective surface and single
crack behaviour (V)
In method (II) it was assumed that the single crack
at the notch root exhibits the same absolute size as
the failure relevant crack (with crack size ac

(1)) in
the surface of the plane bar ignoring all statistical
e�ects. In procedure (V) the reduced e�ective sur-
face near the notch root is taken into considera-
tion. The corresponding crack size ac

(2) results
from eqns (8) and (22)

a�2�c � a�1�c

H�2�

H�1�

� �2

� a�1�c �26�

From this crack length the new geometric function
Y(2) can be computed and the strength �c

(2) of the
notched bar results as

��2��c � ��1�c

H�1�

H�2�
� Y�1�

Y�2�
�27�

More details of this procedure will be published in
a separate paper.16

5.2 Discussion of the predictions
In Fig. 7 the predictions are compared for the ®ve
di�erent methods. The upper illustration relates to
the ®ne-grained alumina, the lower one to the
coarse-grained material. The con®dence intervals
of the predictions are represented by vertical bars.
The experiments are shown by the horizontal lines
which represent the scatter of strength data. In the
special case of the Weibull evaluation the solid
vertical bars relate to volume cracks, the shaded
bars to surface cracks. Here the Weibull exponent
of the ¯at bar was used for predictions `A' and `B',
and in prediction `C' the Weibull exponent of the
bars with wide notch was applied. There is no spe-
ci®c case where an agreement between prediction
and experiment was found for all three specimen
combinations and for the two materials. The pre-
diction method (I) obviously yields the poorest
results in all cases. The best results are found with
the Weibull procedure (method IV) and with the
combination procedure (V).
In case of Rk87 the predictions `A' and `B' agree

excellently under the assumption that surface
cracks dominate failure, whereas prediction `C' can
be described slightly better on the basis of a
volume crack population.
In case of Al23 the single-crack description,

including R-curve behaviour, gives the best agree-
ment with the experiments. Similar agreement is
found in cases `A' and `B' for the Weibull estima-
tion with surface cracks and in case of `C' using

volume cracks. Summarising, we have to admit
that all predictions are not su�cient for this mate-
rial.

6 Summary

Di�erent procedures for strength predictions are
applied to di�erently notched bending bars.

1. Method (I) assumes that the maximum prin-
cipal stress at the notch root governs failure.

2. Method (II) is based on the stress intensity for
a single crack at the notch root, ignoring
R-curve in¯uences. In contrast to method (I),
this procedure takes into account decreasing
stress with increasing distance from the notch
root.

3. Method (III) extends method (II) considering
the R-curve behaviour.

4. Method (IV) applies the multiaxial Weibull
statistics to the complicate stress state of the
notched specimens. Volume cracks and sur-
face cracks are distinguished in the prediction
procedure.

5. Method (V) considers a single crack at the
notch root with reduced size according to the
reduced e�ective surface.

The predictions were compared with measure-
ments carried out for two di�erent aluminas. The
best agreement between strength prediction and
strength measurement was found for the ®ne-
grained alumina with method (IV) and (V) and for
the coarse-grained alumina with method (III) and
method (IV).
In case of the coarse-grained Al2O3 the Weibull

modulus m for notched specimens was found
to be signi®cantly larger than that determined
for unnotched specimens. The disagreement of
the m-values, making the Weibull prediction
problematic for the coarse-grained material,
remains uninterpreted. One possibility may be
that the machining procedure causes di�erent ¯aw
populations although identical diamond wheels
(D46) and identical machining direction were
ensured.
In addition to the strength also cyclic fatigue

behaviour of the notched aluminas was studied
in.17
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